УДК 615.211: 615.015.21

ЕЛЕНА ВЛАДИМИРОВНА КУЗЬМЕНКО, ГАЛИНА ВАСИЛЬЕВНА КУЛИНИЧ ПАВЕЛ ПАВЛОВИЧ СОРОЧАН, АНТОНИНА СТЕПАНОВНА САВЧЕНКО

ГУ «Институт медицинской радиологии им. С. П. Григорьева НАМН Украины», Харьков

РОЛЬ ТРАНСФОРМИРУЮЩЕГО РОСТОВОГО ФАКТОРА TGF-β1 В ПАТОГЕНЕЗЕ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ

Цель работы. Оценка динамики уровня цитокина TGF-β1 в зависимости от стадии и локализации опухолевого процесса.

Материалы и методы. Был изучен исходный уровень цитокина ТGF-β1 в сыворотке крови 20 здоровых лиц (контрольная группа) и 62 больных с различной локализацией и стадиями опухолевого процесса в возрасте от 20 до 79 лет, из них — лимфомой Ходжкина (n = 18), неходжкинской лимфомой (n = 8), раком легкого (n = 18), раком грудной железы (n = 18). У большинства больных была выявлена ІІ стадия — 29 (46,8 %), реже была выявлена ІІІ стадия — 12 (19,4 %), IV стадия — 21 (33,8 %). Содержание цитокина ТGF-β1 в сыворотке крови оценивали с помощью тест-системы DRG TGF-β1 ELISA (Германия) для иммуноферментного анализа на фотометре Sunrise.

Результаты. Установлено, что среднестатистический уровень TGF-β1 при опухолевом росте оказался значительно выше по сравнению с контролем. При исследовании содержания TGF-β1 в зависимости от локализации опухоли были выявлены некоторые особенности. Так, при раке легкого и раке грудной железы содержание TGF-β1 заметно отличалось от контроля, и было вдвое выше, чем при неходжкинской лимфоме и лимфоме Ходжкина. Содержание TGF-β1 на III и IV стадиях онкогенеза было в полтора-два раза выше по сравнению со II стадией заболевания.

Выводы. При опухолевом росте наблюдается повышение содержания TGF-β1 в периферической крови, что указывает на активацию механизмов иммунной супрессии у онкологических больных. Установлено, что уровень TGF-β1 в периферической крови зависит от локализации и стадии онкологического процесса. При этом уровень TGF-β1 возрастает по мере прогрессирования опухолевого процесса.

Ключевые слова: TGF-β1, рак грудной железы, рак легких, неходжкинская лимфома, лимфома Ходжкина.

Поиск эффективных подходов к прогнозированию и течению злокачественных новообразований с использованием информативных молекулярных параметров является на сегодняшний день актуальной задачей современной онкологии. Учитывая многочисленные трудности в оценке прогноза и выборе адекватной тактики лечения злокачественных новообразований, одной из актуальных проблем современной онкологии считается изучение факторов роста и регуляторов неоангиогенеза в крови больных раком при системной терапии с целью разработки патогенетически обоснованных критериев его эффективности и объективизации мониторинга [1, 2].

Трансформирующий фактор роста β1 (ТGF-β1) является полифункциональным цитокином и относится к числу наиболее перспективных молекулярных маркеров, поскольку он вовлечен как в регуляцию процессов клеточной пролиферации, дифференцировки,

© Е. В. Кузьменко, Г. В. Кулинич, П. П. Сорочан, А. С. Савченко, 2015 апоптоза, так и во внутриклеточные процессы и внеклеточное окружение, т. е. такие процессы, которые обеспечивают опухолевую прогрессию. Важным свойством ТGF- β 1 является плейотропность, что в значительной степени обусловливает широкий спектр его биологического действия и иммунорегуляторную активность. Известно, что ТGF- β 1 регулирует функции всех видов иммунокомпетентных клеток. Наиболее сильное действие и, главным образом, иммуносупрессорное TGF- β 1 оказывает на Т-клетки: подавляет пролиферацию, блокирует секрецию IL-2, ингибирует дифференцировку Т-хелперов первого и второго типа и может стимулировать образование Treg-клеток [3, 4].

Функциональная роль ТGF-β1 в процессе канцерогенеза сложна и затрагивает диаметрально противоположные процессы — супрессию и промоцию опухолевого роста [5, 6]. Способность ТGF-β1 ингибировать пролиферацию эпителиальных клеток, а также индуцировать апоптоз и снижать активность теломеразы

лежит в основе механизмов супрессии опухолей. Показано, что TGF-β1 индуцирует апоптоз эпителиальных, эндотелиальных, гематопоэтических клеток как через р53-зависимые, так и р53-независимые механизмы посредством регуляции про- (Вах) и антиапоптотических факторов (Bcl-2, Bcl-x1) [7, 8]. По мере развития опухоли TGF-β1 способствует конверсии ранних эпителиальных опухолей в инвазивные, метастазирующие, участвуя в опухолевой прогрессии. Доминирование проонкогенной активности TGF-β1 реализуется посредством его участия в процессах эпителиальномезенхимального перехода, ангиогенеза, а также в процессе формирования иммунной супрессии. Проведенные в последние годы клинические и экспериментальные исследования показали прогностическую значимость определения белка TGF-β1 в сыворотке крови. Особенности функционирования TGF-β1 представляют большой интерес при изучении состояния иммунитета в условиях опухолевого роста [9].

Учитывая многоплановую роль ТGF-β1 в патогенезе рака, представляется перспективным его исследование с целью выявления маркеров, отражающих закономерности развития прогрессии заболевания, которые могли бы быть использованы наряду с клиническими параметрами при планировании комплексного лечения заболевания.

Цель работы — оценка динамики уровня цитокина TGF-β1 в зависимости от стадии и локализации опухолевого процесса.

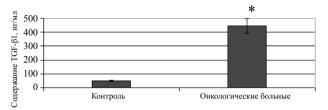
МЕТОДЫ ИССЛЕДОВАНИЯ

Был изучен исходный уровень цитокина ТGF- β 1 в сыворотке крови 20 здоровых лиц (контрольная группа) и 62 больных в возрасте от 20 до 79 лет с различной локализацией и стадиями опухолевого процесса, из них — лимфомой Ходжкина (n = 18), неходжкинской лимфомой (n = 8), раком легкого (n = 18), раком грудной железы (n = 18). У большинства больных была выявлена II стадия — 29 (46,8 %), реже III стадия — 12 (19,4 %) и IV стадия — 21 (33,8 %).

Содержание цитокина TGF- β 1 в сыворотке крови оценивали с помощью тест-системы DRG TGF- β 1 ELISA (Германия) для иммуноферментного анализа на фотометре Sunrise.

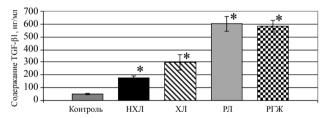
Полученные результаты обрабатывались общепринятыми методами вариационной статистики с использованием t-критерия Стьюдента. Статистические расчеты выполняли с помощью пакета программ БІОСТАТ (версия 4.03). Критический уровень значимости при проверке статистических данных в данном исследовании принимали равным 0,05.

Исследования проводились под контролем Комитета по биоэтике.


РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В последние годы заболеваемость неходжкинской злокачественной лимфомой (НХЛ) неуклонно растет. Так, в США за последние годы заболеваемость НХЛ выросла с 8,5 до 15,1 случая на 100 000 населения, занимая третье место в структуре онкологической

патологии после рака легких (РЛ) и меланомы. Около 12 % пациентов с лимфомами имеют ходжкинские лимфомы (ХЛ), остальные — неходжкинские лимфомы [8, 10].


Рак грудной железы (РГЖ) наиболее частая форма рака среди женщин, поражающая в течение жизни от 1:13 до 1:9 женщин. Это также второе по частоте после рака легких онкологическое заболевание [9].

Проведенное исследование показало, что уровень TGF- β 1 при опухолевом росте оказался значительно выше по сравнению с контролем (р < 0,05) (рис. 1).

Рис. 1. Содержание ТGF- β 1 в сыворотке крови больных с опухолями (n = 62) и здоровых доноров (n = 18) Примечание. Здесь и далее * — различия достоверны относительно контроля, p < 0.05.

При исследовании содержания TGF-β1 в зависимости от локализации опухоли были выявлены некоторые особенности. Так, при РЛ и РГЖ содержание TGF-β1 заметно отличалось от контроля и было вдвое выше, чем при НХЛ и ХЛ (рис. 2).

Рис. 2. Содержание TGF-β1 в сыворотке крови больных с различной локализацией опухолевого процесса

Более высокое содержание TGF- β 1 в сыворотке крови больных РЛ по сравнению с пациентами с НХЛ, ХЛ, РГЖ может быть обусловлено наличием ряда сопутствующих заболеваний. Высокие сывороточные концентрации TGF- β 1 коррелировали с развитием фиброза у пациентов после лучевой терапии.

Таким образом, установлено, что при опухолевом росте происходит увеличение содержания ингибирующего цитокина — TGF- β 1. Наиболее значительные изменения содержания TGF- β 1 обнаружены при РГЖ и РЛ. По всей видимости, TGF- β 1 может служить удобным индикатором степени иммунной супрессии у больных с опухолями.

Уровень TGF-β1 в сыворотке крови определяли на разных стадиях опухолевого процесса (табл.). Концентрация TGF-β1 была низкой у больных с опухолями различной локализации на II стадии, но при этом оказалась выше, чем в контроле (р < 0,05). Однако при РЛ и РГЖ содержание TGF-β1 было в 1, 8 раза выше, нежели при НХЛ и ХЛ. На поздних стадиях выявлены более существенные различия. Содержание TGF-β1 на III и IV стадиях онкогенеза

 $p \le 0.05$

 $p \le 0.05$

 $p \le 0.05$

 $p \le 0.04$

 $p \le 0.05$

 $p \le 0.01$

 $p \le 0.01$

было в полтора-два раза выше по сравнению со II стадией заболевания (р < 0,05). Отмечается тенденция к увеличению уровня TGF- β 1 по мере развития опухолевого процесса. Это подтверждается

IIB

Ш

Ш

IV

Ш

Ш

IV

298.31

400,33

615,72

845,60

345 94

585,31

768.83

(n = 18)

РЛ

(n = 18)

РГЖ

(n = 18)

тем, что TGF-β1 может ингибировать функции эффекторов противоопухолевого иммунного ответа: Т-хелперов, цитотоксических лимфоцитов, дендритных клеток.

Таблица

203,22-412,11

286,21-423,50

500,23-731,21

754,22-975,23

300,12-500,43

488,14-689,68

675,36-890,00

Локализация	Стадия	Статистические показатели, нг/мл				
опухолевого процесса		Среднее значение	Стандартное отклонение	Медиана	Границы min-max	р (по отношению к контролю)
контроль (n = 20)		50,12	4,41	51,05	43,10–56,30	
НХЛ (n = 8)	II	103,71	17,19	101,15	73,30–131,30	p ≤ 0,05 p ≤ 0,01 p ≤ 0,01
	III	159,55	31,93	166,01	166,01–199,32	
	IV	264,40	28,29	271,50	218,00–300,23	
ХЛ	IIA	296,25	21,22	289,00	267,03-344,00	p ≤ 0,03

55.02

41,16

73,05

65,05

51,75

54,90566

58,55

299,30

335,11

633,50

833,40

400,34

592,34

763,36

Содержание ТGF-в1 в периферической крови больных с различной локализацией опухоли

Низкое среднее значение TGF-в1 наблюдалось в группе больных НХЛ с опухолями на III и IV стадиях и составило 159,55 нг/мл и 264,40 нг/мл, что значительно выше, чем в контроле, но ниже, чем при РЛ и РГЖ. Оказалось, что уровень TGF-β1 в периферической крови больных РГЖ и РЛ был значительно выше и составил 585,31 нг/мл и 615,72 нг/мл соответственно, а у больных с IV стадией — 768,83 нг/мл и 845,60 нг/мл, что более чем в 15 раз превышало контроль (p < 0.05). При РЛ (III и IV стадии) отмечен достоверно более высокий уровень TGF-β1, в отличие от больных НХЛ и РГЖ на III и IV стадиях заболевания. Это может быть связанно с тем, что TGF-β1, являясь фиброгенным цитокином, стимулирует изменение структуры стенки бронха, его ремоделирование. ТGF-β1 играет огромную роль в развитии легочного фиброза и потенцировании апоптоза бронхиальных эпителиальных клеток. В частности, высокий уровень продукции TGF-β1 в сыворотке крови ассоциирован с неблагоприятным прогнозом у больных со злокачественными новообразованиями.

По всей видимости, при опухолевом росте изменяется функционирование эффекторов иммунного ответа в результате снижения их активации, ингибирования пролиферации и развития анергии. В дальнейшем развивается толерантность к антигенам опухоли. Одним из механизмов, обусловливающим эти процессы,

является изменение секреции их функционального медиатора — TGF-β1 [10]. Повышение уровня данного маркера указывает на прогрессию заболевания и может служить основанием для прекращения проводимой терапии или ее изменения. Повышающийся уровень TGF-β1 может указывать на развитие отдаленных метастазов без соответствующих симптомов.

Таким образом, можно сделать вывод об информативности сывороточного TGF- β 1, значение которого зависит от стадии онкологического процесса и позволит использовать результаты значений сывороточного TGF- β 1 в качестве объективного диагностического критерия, позволяющего определить стадию заболевания. Поэтому изучение факторов роста представляется перспективным направлением в диагностике и мониторинге злокачественных новообразований.

выводы

- 1. При опухолевом росте наблюдается повышение содержания TGF-β1 в периферической крови, что указывает на активацию механизмов иммунной супрессии у онкологических больных.
- 2. Установлено, что уровень TGF-β1 в периферической крови зависит от локализации и стадии онкологического процесса. При этом уровень TGF-β1 возрастает по мере прогрессирования опухолевого процесса.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. *Роль* трансформирующего ростового фактора ТGF- β 1 в патогенезе рака молочной железы / Н. Н. Бабышкина, Е. А. Малиновская, М. Н. Стахеева и др. // Сиб. онкол. журн. 2010. № 6 (42) С. 63–70.
- 2. *Чуров А. В.* Анализ экспрессии трансформирующего фактора роста β лимфоцитами периферической крови в онкогенезе / А. В. Чуров, Е. К. Олейник, В. М. Олейник // Аллергология и иммунология. 2009. Т. 10. № 2. С. 254.
- 3. *Олейник В. М.* Изучение экспрессии молекулярных маркеров иммунной супрессии FOXP3, TGF- β , T β RII в лимфоцитах периферической крови онкологических больных / В. М. Олейник, Е. К. Олейник, А. В. Чуров // Рос. иммунол. журн. 2008. Т. 2. № 2/3. С. 123.
- 4. Ahmadzadeh M. TGF-h1 attenuates the acquisition and expression of effector function by tumor antigenspecific human memory CD8 T cells / M. Ahmadzadeh, S. A. Rosenberg // J. Immunol. 2005. Vol. 174. P. 5215–5223.
- 5. Barcellos-Hoff M. H. Transforming growth factor-β in breast cancer: too much, too late / M. H. Barcellos-Hoff, R. J. Akhurst // Breast Cancer Research. 2009. Vol. 11. P. 1186–2224.
- 6. *Highthroughput* mapping of a dynamic signaling network in mammalian cells / M. Barrios-Rodiles, K. R. Brown, B. Ozdamar et al. // Science. 2005. Vol. 307. P. 1621–1625.
- 7. Miyazono K. Transforming growth factor-b signaling in epithelial-mesenchymal transition and progression of cancer / K. Miyazono // Proc. Jpn. Acad. Ser. 2009. —Vol. 85. P. 314–323.
- 8. *Mitchell S.* Anscher Targeting the TGF-1 Pathway to Prevent Normal Tissue Injury After Cancer Therapy / S. Mitchell // The Oncologist. 2010. Vol. 15. P. 350–359
- 9. *Derynck R*. Differentiation plasticity regulated by TGF-family proteins in development and disease / R. Derynck, R. J. Akhurst // Nat Cell Biol. 2007. Vol. 9. P. 1000–1004.
- 10. *Santibanez J. F.* TGF-β/TGF-β receptor system and its role in physiological and pathological conditions / J. F. Santibanez, M. Quintanilla // The Authors Journal compilation. 2011. Vol. 121. P. 233–251.

Статья поступила в редакцию 31.10.2014.

О. В. КУЗЬМЕНКО, Г. В. КУЛІНІЧ, П. П. СОРОЧАН, А. С. САВЧЕНКО

ДУ «Інститут медичної радіології ім. С. П. Григор'єва НАМН України», Харків

РОЛЬ ТРАНСФОРМУЮЧОГО РОСТОВОГО ФАКТОРА TGF- β 1 У ПАТОГЕНЕЗІ ЗЛОЯКІСНИХ НОВОУТВОРЕНЬ

Мета роботи. Оцінка динаміки рівня цитокіну TGF- β 1 залежно від стадії і локалізації пухлинного процесу. **Матеріали і методи.** Було вивчено вихідний рівень цитокіну TGF- β 1 у сироватці крові 20 здорових осіб (контрольна група) і 62 хворих з різною локалізацією і стадіями пухлинного процесу віком від 20 до 79 років, з них — з лімфомою Годжкіна (n = 18), негоджкінською лімфомою (n = 8), раком легені (n = 18), раком грудної залози (n = 18). У більшості хворих була виявлена ІІ стадія — 29 (46,8 %), рідше була виявлена ІІІ стадія — 12 (19,4 %), ІV стадія — 21 (33,8 %). Вміст цитокіну TGF- β 1 у сироватці крові оцінювали за допомогою тест-системи DRG TGF- β 1 ELISA (Німеччина) для імуноферментного аналізу на фотометрі Sunrise.

Результати. Встановлено, що середньостатистичний рівень TGF- $\beta 1$ при пухлинному рості виявився значно вищим порівняно зі контролем. При дослідженні вмісту TGF- $\beta 1$ залежно від локалізації пухлини були виявлені деякі особливості. Так, при РЛ і РГЗ вміст TGF- $\beta 1$ помітно відрізнявся від контролю і був удвічі вище, ніж при НГЛ і ЛГ. Вміст TGF- $\beta 1$ на ІІІ і IV стадіях онкогенезу був в півтора-два рази вище порівняно з ІІ стадією захворювання.

Висновки. Під час пухлинного зростання спостерігається підвищення вмісту ТGF-β1 у периферичній крові, що вказує на активацію механізмів імунної супресії в онкологічних хворих. Виявлено, що рівень ТGF-β1 у периферичній крові залежить від локалізації і стадії онкологічного процесу. При цьому рівень ТGF-β1 зростає у разі прогресування пухлинного процесу.

Ключові слова: ТGF-β1, рак грудної залози, рак легень, негоджкінська лімфома, лімфома Годжкіна.

E. V. KUZMENKO, G. V. KULINICH, P. P. SOROCHAN, A. S. SAVCHENKO

SI «Grigoriev Institute for Medical Radiology of National Academy of Medical Sciences of Ukraine», Kharkiv

ROLE OF TRANSFORMING GROWTH FACTOR TGF-β1 IN PATHOGENESIS OF MALIGNANT NEOPLASMS

Purpose. Estimation of dynamic of TGF-β1 cytokine level depending on stage and localization of neoplastic process.

Materials and methods. The initial level of TGF-β cytokine in blood serum of 20 healthy people (control group) and 62 patients aged from 20 to 79 with different localization and stages of neoplastic process, i.e. Hodgkin's lymphoma (n = 18), non-Hodgkin lymphoma (n = 8), lung cancer (n = 18), breast cancer (n = 18), was carried out. II stage was detected in 29 patients (46.8 %), III stage — in 12 patients (19.4 %), IV stage — in 21 patients (33.8 %). Cytokine TGF-β1 content in blood serum was estimated by means of DRG TGF-β1 ELISA (Germany) test system for enzyme multiplied immunoassay on Sunrise photometer.

Results. It has been established that the average level of TGF- β 1 in tumor growth appeared to be significantly higher in comparison with control. The study of TGF- β 1 content depending on tumor location revealed some peculiarities. In lung cancer and breast cancer, TGF- β 1 content was significantly different from control and it was twice higher than in Hodgkin's lymphoma and non-Hodgkin lymphoma. TGF- β 1 content at II and IV stages of oncogenesis was 1.5–2 times higher in comparison with II stage of the disease.

Conclusions. Increase of TGF- β 1content in peripheral blood is observed in tumor growth. It suggests activation of mechanisms of immune suppression in oncology patients. It is found that TGF- β 1 level in peripheral blood depends on localization and stage of oncological process. In this case TGF- β 1 level increases according to progressing of neoplastic process.

Keywords: TGF-β1, breast cancer, lung cancer, non-Hodgkin lymphoma, Hodgkin's lymphoma.

Контактная информация:

Кузьменко Елена Владимировна к. мед. наук, старший научный сотрудник лаборатории радиационной иммунологии ГУ ИМР НАМН Украины ул. Пушкинская, 82, Харьков, 61024, Украина тел.: +38 (067) 812-50-06

тел.: +38 (067) 812-50-06 e-mail: evkyzmenko@mail.ru