УДК 616.24-006-06:616-007.288 НИКОЛАЙ ВИЛЛЕНОВИЧ КРАСНОСЕЛЬСКИЙ, ЕВГЕНИЙ НИКОЛАЕВИЧ КРУТЬКО, СЕРГЕЙ АЛЕКСАНДРОВИЧ ПИЛИПЕНКО

ГУ «Институт медицинской радиологии им. С. П. Григорьева НАМН Украины», Харьков

РЕСПИРАТОРНО-ГЕМОДИНАМИЧЕСКИЕ РЕАКЦИИ У БОЛЬНЫХ РАКОМ ЛЕГКОГО, ОСЛОЖНЕННЫМ АТЕЛЕКТАЗОМ

Цель работы. Опубликованы материалы исследования, которые подтверждают парадоксальные респираторно-гемодинамические реакции у больных с ателектазами легких.

Материалы и методы. Определены патофизиологические механизмы данных реакций с использованием параметров неинвазивного артериального давления, насыщения крови кислородом, пульса.

Результаты. Полученные результаты свидетельствуют о двух патофизиологических механизмах компенсации у больных с ателектазами легких. После пережатия ветви легочной артерии повышение тонуса артерий в данном участке легкого уменьшает кровоток, и отношение вентиляция/кровоток выравнивается, что соответствует рефлексу Эйлера—Лильестранда.

Выводы. После резекции ателектазированного участка легкого повышается торакопульмональное давление, которое было снижено в следствие ателектаза, что способствует увеличению комплайнса легочной ткани.

Ключевые слова: рак легкого, ателектаз, оксигенация крови.

Ателектаз легких — патологическое состояние целого легкого или его части, при котором отмечается его спадение и безвоздушность. Факторами, снижающими транспульмональное давление и ведущими к развитию ателектаза, могут быть повышенное давление в плевральной полости (при пневмотораксе, скоплении экссудата) или закупорка бронхов большего или меньшего диаметра, заканчивающаяся рассасыванием воздуха в соответствующем участке легкого. Наконец, в патогенезе ателектаза немаловажное значение может иметь дефицит сурфактанта [2].

Изучая патофизиологию особенностей кровообращения у больных с ателектазами легкого, мы не могли не упомянуть о рефлексе Эйлера—Лильестранда [1, 3].

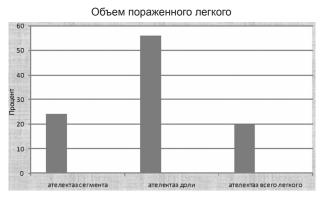
Как проявляется рефлекс Эйлера—Лильестранда? Уменьшение напряжения кислорода в альвеолярном воздухе сопровождается повышением тонуса артерий малого круга. Этот рефлекс имеет физиологическое назначение в плане восстановления кровотока в связи с изменяющейся вентиляцией легких. Если в определенном участке легкого вентиляция альвеол уменьшается, соответственно должен уменьшиться кровоток, так как в противном случае отсутствие должной оксигенации крови в ателектазированной ткани естественно приводит к снижению насыщения ее кислородом. Повышение тонуса артерий в данном участке легкого уменьшает кровоток, и отношение вентиляция/кровоток выравнивается.

© Н. В. Красносельский, Е. Н. Крутько, С. А. Пилипенко, 2017 Наиболее приемлемым и общепринятым объяснением патофизиологических механизмов нарушения гемодинамики при пульмонэктомиях у больных с ателектазами является снижение артериального давления (АД), повышение центрального венозного давления (ЦВД), гипоксемия, гиперкапния [4, 6].

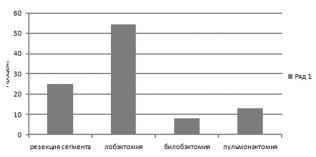
Интерес к этому исследованию вызван рядом пародоксальных гемодинамических и респираторных реакций у торакальных больных с ателектазами сегмента, доли и всего легкого [5].

Цель исследования — определить патофизиологически значимые гемодинамические механизмы в зависимости от объема функционирующей ткани легкого.

МЕТОДИКА ИССЛЕДОВАНИЯ


Нами обследовано и пролечено 27 больных раком легкого, у которых рак легкого осложнялся ателектазом.

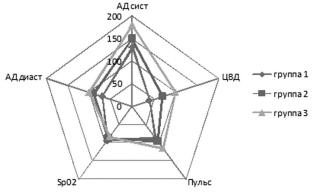
В зависимости от объема ателектаза пациенты были распределены следующим образом (рис. 1).


Исходя из рисунка 1, можно сделать вывод, что преобладали пациенты с ателектазом доли легкого, что составило $58\,\%$ всех исследуемых пациентов.

Степень дыхательной недостаточности (ДН) тесно коррелировала с объемом пораженного участка легкого. ДН 1 ст. была выявлена у 60 % больных, ДН 2 ст. выявлена у 23 %, у 17 % больных ДН выявлена не была. Пациенты с ДН 3 и 4 ст. в исследовании не участвовали.

По объему оперативного вмешательства все пациенты были распределены следующим образом (рис. 2).

Рис. 1. Распределение больных по объему пораженного легкого


Рис. 2. Распределение объема оперативного лечения

По полученным данным превалировали пациенты, у которых была выполнена лобэктомия, что составило 57 %.

Всем пациентам, у которых проводилась лобэктомия, билобэктомия и пульмонэктомия, в обязательном порядке делали пробу Маттэя.

Контроль гемодинамики осуществлялся с помощью неинвазивного измерения АД, частоты пульса, центрального венозного давления. Насыщения крови кислородом определялось с помощью пульсоксиметрии. Контроль респираторных нарушений проводили с помощью исследования функции внешнего дыхания на респираторе посредством петли объем — давление.

Все пациенты были распределены по степени насыщения крови кислородом и гемодинамическим нарушениям (рис. 3).

Рис. 3. Респираторно-гемодинамические показатели больных

Как видно из рисунка 3, пациенты с нарастающими показателями АД систолического, диастолического и ЦВД тесно коррелировали с нисходящим уровнем

сатурации крови. По количеству превалировали пациенты 2 группы (57%), у которых АД сист. — $150 \,\mathrm{MM}$ рт. ст. АД диаст. — $90 \,\mathrm{MM}$ рт. ст., ЦВД — $80, \,\mathrm{SpO2} - 89$ %.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исходя из данных, представленных выше, наиболее часто рак легкого осложнялся ателектазом доли легкого, что составило 58 % больных, у 23 % больных течение заболевания осложнялось ателектазом сегмента, и у 19 % ателектазом всего легкого.

Оперативные вмешательства были распределены пропорционально в зависимости от объема поражения легочной ткани опухолью. Превалировали лобэктомии — 57 %, билобэктомии составили 9 %, пульмонэктомии — 15 %.

При использовании пробы Маттэя во время операционного этапа лечения у больных, которым выполнялась лобэктомия, было отмечено в 89 % случаях повышение SpO2 на 9,0 \pm 1,2 % (p < 0,05), снижение ЦВД на 15,0 \pm 2,1 см вод. ст. (p < 0,05), отмечено снижение АД сист. с 153,0 \pm 8,4 до 132,0 \pm 8,7 (p < 0,05) мм рт. ст., АД диаст. снизилось со 100,0 \pm 9,8 до 70,0 \pm 7,2 мм рт. ст. (p < 0,05). Изменение пульса соответствовало изменению давления со 112,0 \pm 5,3 до 87,0 \pm 3,2 уд. в мин. (p < 0,05).

У больных, которым выполнялась билобэктомия и пульмонэктомия, в 92 % случаев отмечено повышение SpO2 на 11,0 \pm 1,2 % (p < 0,05), снижение ЦВД на 8,0 \pm 1,2 см вод. ст. (p < 0,05), отмечено снижение АД сист. с 175,0 \pm 9,6 до 140,0 \pm 7,2 (p < 0,05) мм рт. ст., АД диаст. снизилось с 110,0 \pm 9,4 до 85,0 \pm 7,2 мм рт. ст. (p < 0,05). Изменения пульса соответствовали изменению давления с 122,0 \pm 5,2 до 76,0 \pm 3,1 уд. в мин. (p < 0,05).

При отжатии зажима с легочной артерии в течение 5 минут показатели гемодинамики возвращались к исходным показателям. После удаления препарата доли, двух долей или всего легкого показатели гемодинамики и оксигенации были такими же, как и при выполненной пробе Маттэя.

Интенсивная терапия в периоперационном периоде включала в себя инфузионную терапию малыми объемами в расчете 5мл/кг/час. Учитывая, что все пациенты шли на операцию с перегрузкой правых отделов сердца, уровень кровопотери интраоперационно составил $120,0 \pm 15,7$ мл (p < 0,05).

Вентиляция проводилась в протективном режиме с поддержкой давления. После удаления препарата уровень вентиляции значительно не изменялся, повидимому, за счет адаптационных реакций у пациентов с ателектазами.

Всем больным была проведена тотальная внутривенная анестезия с искусственной вентиляцией легких.

выводы

1. После пережатия ветви легочной артерии повышение тонуса артерий в данном участке легкого уменьшает кровоток, и отношение вентиляция/кровоток выравнивается, что соответствует рефлексу Эйлера—Лильестранда.

2. После резекции ателектазированного участка которое было снижено вследствии ателектаза, что сполегкого повышается торакопульмональное давление, собствует увеличению комплайнса легочной ткани.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Физиология человека. В 3 т. Т. 2 / под ред. Р. Шмидта и Г. Тевса. М.: Мир, 1996. С. 591.
- 2. *Филатова Е. Г.* Нейрогенные расстройства дыхания: гипервентиляционный синдром / Е. Г. Филатова // Лечащий врач. 2007. № 9. С. 70–73.
- 3. *Миронов А. В.* Экстренная фибробронхоскопия в диагностике и лечении ателектаза легкого / А. В. Миронов, Т. П. Пинчук, И. Е. Селина, Д. А. Косолапов // Анестезиология и реаниматология. 2013. № 6.
- 4. Глумчер Ф. С. Острый респираторный дистресс-синдром: определение, патогенез, терапия / Ф. С. Глумчер // Мистецтво лікування. 2004. № 9. С. 30–35.
- 5. *Бокерия Л. А.* Использование неинвазивной вентиляции для профилактики клинически значимых легочных осложнений в раннем послеоперационном периоде у кардиохирургических пациентов / Л. А. Бокерия, Е. З. Голухова, А. Т. Медресова, С. Н. Казановская // Креатив. кардиология. 2014. № 1. С. 37–47.
- 6. Yuh D. D. The Johns Hopkins manual of cardiothoracic surgery / D. D. Yuh, L. A. Vricella, W. A. Baumgartner. New York [etc.]: McGraw-Hill Medical, 2007. Index: P. 1415–1464, ill. Bibliogr. at the end of chapters.

Статья поступила в редакцию 05.03.2017.

М. В. КРАСНОСЕЛЬСЬКИЙ, €. М. КРУТЬКО, С. О. ПИЛИПЕНКО

ДУ «Інститут медичної радіології ім. С. П. Григор'єва НАМН України», Харків

РЕСПІРАТОРНО-ГЕМОДИНАМІЧНІ РЕАКЦІЇ У ХВОРИХ НА РАК ЛЕГЕНІ, УСКЛАДНЕНИЙ АТЕЛЕКТАЗОМ

Мета роботи. Опубліковані матеріали дослідження, які підтверджують парадоксальні респіраторно-гемодинамічні реакції у хворих з ателектазами легенів.

Матеріали і методи. Визначені патофізіологічні механізми цих реакцій з використанням параметрів неінвазивного артеріального тиску, насичення крові киснем, пульсу.

Результати. Отримані результати свідчать про два патофізіологічні механізми компенсації у хворих з ателектазами легенів. Після передавлення гілки легеневої артерії підвищення тонусу артерій в цій ділянці легені зменшує кровотік, і відношення вентиляція/кровотік вирівнюється, що відповідає рефлексу Ейлера—Лільєстранда.

Висновки. Після резекції ателектазованої ділянки легені підвищується торакопульмональний тиск, який було знижено внаслідок ателектазу, що сприяє збільшенню комплайнсу легеневої тканини.

Ключові слова: рак легені, ателектаз, оксигенація крові.

N. V. KRASNOSELSKIY, YE. M.KRUTKO, S. O. PYLYPENKO

SI «Grigoriev Institute for Medical Radiology of National Academy of Medical Sciences of Ukraine», Kharkiv

RESPIRATORY-HAEMODYNAMIC REACTIONS IN PATIENTS WITH LUNG CANCER COMPLICATED BY ATELECTASIS

The article contains published research materials confirming paradoxical respiratory-haemodynamic reactions in patients with lung atelectasis. The physiopathology mechanisms of these reactions were estimated by means of non-invasive arterial pressure, blood saturation and pulse values. The outcomes obtained are indicative of two pathophysiologic compensation mechanisms in patients with lung atelectasis. After pressing carotid artery branch — increased tonicity of the arteries in this lung area decreases blood flow resulting in ventilation/blood flow rate balancing that corresponds to Euler-Liljestrand mechanism. Resection of atelectized lung area leads to increased thoraco-pulmonary pressure, which has been reduced through atelectasis, that aids in higher lung tissue compliance.

Keywords: lung cancer, atelectasis, blood oxygenation.

Контактная информация:

Крутько Евгений Николаевич

д. мед. н., заведующий отделением анестезиологии и реанимации ГУ ИМР НАМН Украины ул. Пушкинская, 82, г. Харьков, 61024, Украина

тел.: 038 (067) 93-14-314